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Abstract. Time-series data with regular and/or seasonal long-memory are often

aggregated before analysis. Often, the aggregation scale is large enough to remove

any short-memory components of the underlying process but too short to eliminate

seasonal patterns of much longer periods. In this paper, we investigate the limiting

correlation structure of aggregate time series within an intermediate asymptotic frame-

work that attempts to capture the aforementioned sampling scheme. In particular, we

study the autocorrelation structure and the spectral density function of aggregates from

a discrete-time process. The underlying discrete-time process is assumed to be a sta-

tionary Seasonal AutoRegressive Fractionally Integrated Moving-Average (SARFIMA)

process, after suitable number of differencing if necessary, and the seasonal periods of

the underlying process are multiples of the aggregation size. We derive the limit of the

normalized spectral density function of the aggregates, with increasing aggregation.

The limiting aggregate (seasonal) long-memory model may then be useful for analyz-

ing aggregate time-series data, which can be estimated by maximizing the Whittle

likelihood. We prove that the maximum Whittle likelihood estimator is consistent and
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asymptotically normal, and study its finite-sample properties through simulation. The

efficacy of the proposed approach is illustrated by a real-life internet traffic example.

KEY WORDS: Asymptotic normality; Consistency; Quasi-maximum likelihood

estimation; Seasonal auto-regressive fractionally integrated moving-average models;

Spectral density; Whittle likelihood.

1 Introduction

Data are often aggregated before analysis, for example, 1-minute data aggregated into

half-hourly data or daily data aggregated into monthly data. On a fine sampling scale,

many time series are of long memory in the sense that their spectral density function

admit a pole at the zero frequency. A popular class of discrete time long memory

processes are autoregressive fractionally integrated moving average (ARFIMA) models

(see Granger and Joyeux 1980; Hosking 1981). Man and Tiao (2006) and Tsai and

Chan (2005) showed that temporal aggregation preserves the long-memory parameter

of the underlying ARFIMA process. Ohanissian, Russell, and Tsay (2008) made use

of this property in developing a test for long-memory. Furthermore, as the extent of

aggregation increases to infinity, the limiting model retains the long-memory parameter

of the original process, whereas the short-memory components vanish.

In practice, the underlying process may admit seasonal long memory in that its
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spectral density function may have poles at certain non-zero frequencies. Such data may

be modeled as some Seasonal Auto-Regressive Fractionally Integrated Moving-Average

(SARFIMA) process, see Section 2. If the aggregation interval is much larger than the

largest seasonal period, aggregation will intuitively merge the seasonal long-memory

components with the regular long-memory component and eliminate the regular or

seasonal short-memory components of the raw data. For example, within the frame-

work of ARIMA models, Wei (1978) showed that aggregation removes seasonality if

the frequency of aggregation is larger or the same as the seasonal frequency.

On the other hand, if the aggregation interval is large but is just some fraction

of the seasonal periods of the original data, the aggregates may be expected to keep

the seasonal short- and long-memory pattern, albeit with different periods. For many

data, the latter scenario may be more relevant for analysis. For example, aggregating

1-minute data into half-hourly data may remove the short memory component on the

minute scale but the daily or monthly correlation pattern of the raw data may persist

in the aggregates.

Here, our purposes are twofold. First, we study the intermediate asymptotics

of aggregating a SARFIMA process. In particular, we derive the limiting (normal-

ized) spectral density function of an aggregated SARFIMA process via the asymptotic

framework where the seasonal periods of the SARFIMA model are multiples of the ag-

gregation interval and the aggregation interval is large. While the original time series

is assumed to be a SARFIMA process, the limiting result is robust to the exact form

of the short-memory and the regular long-memory components. The limiting spectral

density functions then define a class of models suitable for analyzing aggregate time

series that may have regular or seasonal long-memory and short-memory components.

Second, we derive the large-sample properties of the Quasi-Maximum Likelihood Es-

timator (QMLE) of the limiting aggregate SARFIMA model, obtained by maximizing
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the Whittle likelihood.

The rest of the paper is organized as follows. The SARFIMA model is reviewed

in Section 2. In Section 3, we derive the limiting spectral density function of an

aggregate SARFIMA process, under the intermediate asymptotic framework. Qusai-

maximum likelihood estimation of the limiting aggregate SARFIMA model and its

large-sample properties are discussed in Section 4. We report some results on the

empirical performance of the QMLE in Section 5, and illustrate the use of the limiting

aggregate SARFIMA model with a real application in Section 6. We conclude in

Section 7. All proofs are deferred to the appendix.

2 Seasonal autoregressive fractionally integrated mov-

ing average models

Over the last two decades, studies about long memory and cyclical behavior have

gained popularity and importance in many fields including hydrology, telecommuni-

cation engineering and econometrics. See, for example, Porter-Hudak (1990), Ray

(1993), Hassler and Wolters (1995), Montanari, Rosso, and Taqqu (2000), and Palma

and Chan (2005). In particular, Porter-Hudak (1990) introduced the SARFIMA model

and illustrated its use in studying the long-memory and cyclical behavior in the U.S.

monetary aggregates. See also Palma and Bondon (2003), and Palma and Chan (2005).

We now review the SARFIMA model, with particular attention to the spectrum and

the long-memory properties of the SARFIMA models. Let {Yt, t = 0,±1,±2, · · ·} be

a seasonal autoregressive fractionally integrated moving average (SARFIMA) model

with multiple periods s1, ..., sc

φ(B)(1−B)d
c∏

i=1

Φi(B
si)(1−Bsi)DiYt = θ(B)

c∏
i=1

Θi(B
si)εt, (1)
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where d and Di, i = 1, . . . , c, are real numbers, sc > sc−1 > · · · > s1 > 1 are integers,

{εt} is an uncorrelated sequence of random variables with zero mean and common,

finite variance σ2
ε > 0, φ(z) = 1− φ1z− · · · − φpz

p, θ(z) = 1 + θ1z + · · ·+ θqz
q, and for

i = 1, ..., c, Φi(z) = 1 − Φi,1z − · · · − Φi,Pi
zPi , Θi(z) = 1 + Θi,1z + · · · + Θi,Qi

zQi , B is

the backward shift operator, and (1−B)d is defined by the binomial series expansion

(1−B)d =
∞∑

k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Bk,

where Γ(·) is the gamma function. Stationarity of {Yt} requires Di < 1/2 for all i and

d +
∑c

i=1 Di < 1/2, see Palma and Bondon (2003). We assume that none of the roots

of φ(·) and Φi(·), i = 1, ..., c, match any roots of θ(·) and Θi(·), i = 1, ..., c. Moreover,

all roots of of the above polynomials are assumed to lie outside the unit circle. The

conditions on the roots, the fractional orders d and D’s ensure that {Yt} is stationary

and the model is identifiable. It can be readily checked that the spectral density of

{Yt} equals, for −π < ω ≤ π,

h(ω) =
σ2

2π

∣∣∣∣∣ θ(exp(jω))

φ(exp(jω))

∣∣∣∣∣
2

|1− exp(iω)|−2d
c∏

j=1

∣∣∣∣∣Θj(exp(isjω))

Φj(exp(isjω))

∣∣∣∣∣
2 c∏

j=1

|1− exp(isjω)|−2Dj

=
σ2

2π

∣∣∣∣∣ θ(exp(jω))

φ(exp(jω))

∣∣∣∣∣
2 ∣∣∣∣2 sin

(
ω

2

)∣∣∣∣−2d c∏
j=1

∣∣∣∣∣Θj(exp(isjω))

Φj(exp(isjω))

∣∣∣∣∣
2 c∏

j=1

∣∣∣∣2 sin
(

sjω

2

)∣∣∣∣−2Dj

=
σ2

2π

∣∣∣∣∣ θ(exp(jω))

φ(exp(jω))

∣∣∣∣∣
2 ∣∣∣∣2 sin

(
ω

2

)∣∣∣∣−2δ0 c∏
j=1

∣∣∣∣∣Θj(exp(isjω))

Φj(exp(isjω))

∣∣∣∣∣
2

×
c∏

j=1

τj∏
k=1

∣∣∣(exp(iνjk)− exp(iω)
)(

exp(−iνjk)− exp(iω)
)∣∣∣−2δjk

, (2)

where δ0 = d + D1 + · · · + Dc; τj = [sj/2], the greatest integer ≤ sj/2; νjk = 2πk/sj,

for j = 1, ..., c, and k = 1, ..., τj; δjk = Dj, for k = 1, ..., τj − 1, δjτj
= Dj if sj = 2τj +1,

and δjτj
= Dj/2 if sj = 2τj. The last equality in (2) follows from the factorization of

xsj − 1 in terms of its roots that consist of 1 and exp(±νjk), k = 1, . . . , τj. From (2),
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we see that, as ω → 0, the spectral density f(ω) = O(|ω|−2d−2D1−···−2Dc), whereas for

j = 1, ..., c, k = 1, ..., τj, as ω → νjk, f(ω) = O(|ω − νjk|−2Dj).

From the above discussion, it is clear that the SARFIMA process defined in (1)

subsumes many important time-series models including pure long-memory processes,

pure seasonal long-memory processes and seasonal ARMA processes. Given our interest

in long-memory processes, throughout this paper, the parameters d and the Dj’s are

restricted by the inequality constraints: 0 ≤ d+D1+· · ·+Dc < 1/2, and 0 ≤ Dj < 1/2,

for j = 1, ..., c.

3 Aggregates of SARFIMA models

For non-stationary data, we assume that, after suitable regular and/or seasonal dif-

ferencing, the data become stationary and follow some stationary SARFIMA model.

Specifically, let r and Rj, j = 1, ..., c, be non-negative integers and {Yt, t = 0,±1,±2, · · ·}
a time series such that (1−B)r(1−Bs1)R1 · · · (1−Bsc)RcYt is a stationary SARFIMA

model defined by equation (1). Therefore, {Yt} satisfies the difference equation

φ(B)(1−B)r+d
c∏

j=1

Φj(B
sj)(1−Bsj)Rj+DjYt = θ(B)

c∏
j=1

Θj(B
sj)εt, (3)

which is referred to as the SARFIMA(p, r +d, q)× (P1, R1 +D1, Q1)s1 ×· · ·× (Pc, Rc +

Dc, Qc)sc model.

Let m ≥ 2 be an integer and

Xm
T =

mT∑
k=m(T−1)+1

Yk

be the non-overlapping m-temporal aggregates of {Yt}. Let ∇ = 1−B be the first dif-

ference operator, and ∇s = 1−Bs the lag-s difference operator. Let D = (D1, ..., Dc),
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R = (r, R1, ..., Rc), ξ = (d; Dj, j = 1, ..., c; Φi,j, i = 1, ..., c, j = 1, ..., Pi; Θi,j, i =

1, ..., c, j = 1, ..., Qi), and assume si = mzi, i = 1, ..., c. Below we derive the spec-

tral density of the aggregates, and the limit of the normalized spectral densities with

increasing aggregation. The normalization that makes the spectral densities integrate

to 1 is necessary lest the variance of the aggregates may increase without bound with

increasing aggregation.

THEOREM 1 Assume that {Yt} satisfies the difference equation defined by (3).

(a) For r ≥ 0, Ri ≥ 0, i = 1, ..., c, and m = 2h + 1, the spectral density function of

{∇r∇R1
z1
· · ·∇Rc

zc
Xm

T } is given by

fξ,m(ω) =
1

m

∣∣∣∣2 sin
(

ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣2 sin
(

zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
h∑

k=−h

∣∣∣∣∣2 sin

(
ω + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
ω + 2kπ

m

)
, (4)

where g(ω) = σ2(2π)−1|θ(exp(iω))|2|φ(exp(iω))|−2 and −π < ω ≤ π.

If m = 2h, the spectral density is given by equation (4) with the summation ranging

from −h + 1 to h for −π < ω ≤ 0 and from −h to h− 1 for 0 < ω ≤ π.

(b) As m → ∞, the normalized spectral density function of {∇r∇R1
z1
· · ·∇Rc

zc
Xm

T } con-

verges to

fξ(ω) = Kξ

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣sin(zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
∞∑

k=−∞
|ω + 2kπ|−2r−2d−2, (5)

where Kξ is the normalization constant ensuring that
∫ π
−π fξ(ω)dω = 1.

Remark 1: Note that zc > zc−1 > · · · > z1 ≥ 1. For j = 1, ..., c, k = 0, 1, ..., [zj/2], let

ωjk = νj(mk) = 2πk/zj, then both m−2r−2d−1fξ,m and fξ are of order O(|ω|−2d−2D1−···−2Dc),
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for ω → 0, and of order O(|ω − ωjk|−2Dj), for ω → ωjk, j = 1, ..., c, k = 1, ..., [zj/2].

Remark 2: If z1 = 1, the corresponding seasonal long-memory component is confounded

with the regular long-memory component for the limiting aggregate process. Hence,

without loss of generality, we shall set D1 = 0 if z1 = 1 in applications.

Remark 3: In order for the term
∑∞

k=−∞ |ω+2kπ|−2r−2d−2 to be well-defined, we assume

r + d > −1/2.

Remark 4: As m → ∞, the limiting autocorrelation function of {∇r∇R1
z1
· · ·∇Rc

zc
Xm

T }
is given by

ρξ(h) = Cξ

∫ π

0
cos(ωh)

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣sin(zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
∞∑

k=−∞
|ω + 2kπ|−2r−2d−2dω,

where Cξ is a normalization constant ensuring that ρξ(0) = 1.

Remark 5: If r = 0, then the limiting model of the aggregates of {Yt} is simply a

SARFIMA(P1, R1 + D1, Q1)z1 × · · · × (Pc, Rc + Dc, Qc)zc process with fractional Gaus-

sian noise as the driving noise process, where the self-similarity parameter (Hurst

parameter) of the underlying fractional Gaussian process equals H = d + 1/2. See

Beran (1994) for definition of the fractional Gaussian noise.

4 Quasi-maximum likelihood estimator and its large

sample properties

We are interested in applying the long-memory limiting aggregate process derived in

Section 3 to data analysis. For this purpose, we assume (i) 0 ≤ d+D1 + · · ·+Dc < 1/2

and (ii) 0 ≤ Dj < 1/2 for j = 1, ..., c. The limiting aggregate process is of long memory
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regularly or seasonally if either 0 < d + D1 + · · ·+ Dc < 1/2 or 0 < Dj < 1/2 for some

j ∈ {1, ..., c}. Note that this implicitly implies −c/2 < d < 1/2. We also introduce

the parameter σ to account for the variance of the data. Furthermore, we assume zj,

j = 1, ..., c, are known. Consider a time series {Yi}N
i=1−δ, where δ is a positive integer

to be defined below, such that, conditional on {Yi}0
i=1−δ, {∇r∇R1

z1
· · ·∇Rc

zc
Yi}N

i=1 is a

stationary process with its spectral density defined by

f(ω; ξ, R, σ2) = σ2

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣sin(zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
∞∑

k=−∞
|ω + 2kπ|−2r−2d−2, −π < ω ≤ π, (6)

where δ = maxr +
∑c

i=1 zi ·maxRi
; maxr and maxRi

, i = 1, ..., c, are the largest possible

values of r and Ri, i = 1, ..., c, respectively, which we will consider in simulation

studies and real data analysis in Sections 5 and 6. That is, the maximum likelihood

estimators r̂ and R̂i, i = 1, ..., c, satisfy the conditions that r̂ ∈ {0, ..., maxr} and

R̂i ∈ {0, ..., maxRi
}, for i = 1, ..., c. The auto-covariance function corresponding to the

spectral density function defined by (6) equals, for any integer h,

γξ,R,σ2(h) = 2σ2
∫ π

0
cos(ωh)

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣sin(zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
∞∑

k=−∞
|ω + 2kπ|−2r−2d−2dω.

It can be easily checked that, conditional on {Yi}0
i=1−δ, the joint distributions of

{∇r∇R1
z1
· · ·∇Rc

zc
Yi}N

i=1 and {Yi}N
i=1 are the same. Therefore, conditional on {Yi}0

i=1−δ,

the (negative) log-likelihood function of {Yi} can be approximated by the (negative)

Whittle log-likelihood function (see Hosoya, 1996)

−l̃(ξ, R, σ2) =
T∑

j=1

{
log f(ωj; ξ, R, σ2) +

IN(ωj; R)

f(ωj; ξ, R, σ2)

}
, (7)
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where ωj := 2πj/N ∈ (0, π) are the Fourier frequencies, T is the largest integer ≤
(N − 1)/2, IN(ω; R) =

∣∣∣∑N
j=1 Uj(R) exp(ijω)

∣∣∣2 /(2πN), and Ui(R) = ∇r∇R1
z1
· · ·∇Rc

zc
Yi,

i = 1, ..., N . In (7), the computation of f(ωj; ξ, R, σ2) requires evaluation of an infinite

sum. Here, we adopt the method of Chambers (1996) to approximate f(ω; ξ, R, σ2) by

f̃(ω; ξ, R, σ2)

= σ2

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣sin(zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

h(ω; ξ, R), (8)

where h(ω; ξ, R) = {2π(2r + 2d + 1)}−1{(2πM − ω)−2r−2d−1 + (2πM + ω)−2r−2d−1} +∑M
k=−M |ω + 2kπ|−2r−2d−2 for some large integer M . By routine analysis, it can be

shown that, under the conditions stated in Theorem 2, the approximation error of

h(ω; R, ξ) to the infinite sum is of order O(M−2r−2d−2). Also, the approximation error

of the first partial derivative with respect to d is of order O(M−2r−2d−1−ε), for any

positive ε less than 1. These error rates guarantee that if the truncation parameter

M increases with the sample size at a suitable rate, then the truncation has negligible

effects on the asymptotic distribution of the estimator, see Theorem 2 below. Replac-

ing f(ωj; ξ, R, σ2) with f̃(ωj; ξ, R, σ2) and letting g̃(ωj; ξ, R) = f̃(ωj; ξ, R, σ2)/σ2, the

(negative) Whittle log-likelihood function (7) now becomes

−l̃(ξ, R, σ2) =
T∑

j=1

{
log σ2 + log g̃(ωj; ξ, R) +

IN(ωj; R)

σ2g̃(ωj; ξ, R)

}
. (9)

Differentiating (9) with respect to σ2 and equating to zero gives

σ̂2 =
1

T

T∑
j=1

IN(ωj; R)

g̃(ωj; ξ, R)
. (10)

Substituting (10) into (9) yields the objective function

−l̃(ξ, R) =
T∑

j=1

log g̃(ωj; ξ, R) + T log

 T∑
j=1

IN(ωj; R)

g̃(ωj; ξ, R)

+ C, (11)
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where C = T − T log T . The objective function is minimized with respect to ξ and R

to get the quasi-maximum likelihood estimators (QMLEs) ξ̂ and R̂; the estimator σ̂2 is

then calculated by (10). Specifically, the quasi-maximum likelihood estimators ξ̂ and

R̂ are computed based on equation (11) using the following procedure (Recall that 0 ≤
Dj < 1/2, for j = 1, ..., c, and 0 ≤ d+D1 + · · ·+Dc < 1/2). For each r ∈ {0, ..., maxr}
and Ri ∈ {0, ..., maxRi

}, for i = 1, ..., c, we first find the local maximum likelihood

estimator of ξ in the range that 0 ≤ Dj < 1/2, j = 1, ..., c, and r ≤ d+D1 + · · ·+Dc <

r + 1/2. In our experiments, we let maxr = maxR1 = · · · = maxRc = 2. These local

maximum likelihood estimators are then used to find the global maximum likelihood

estimator of ξ, as well as those of r and R’s.

For simplicity, let θ = (ξ, σ2), and θ̂ = (ξ̂, σ̂2) be the quasi-maximum likelihood

estimator that minimizes the (negative) Whittle log-likelihood function (9). Below, we

derive the large-sample distribution of the QMLE.

THEOREM 2 Let the data Y = {Yi}N
i=1 be such that {∇r∇R1

z1
· · ·∇Rc

zc
Yi}N

i=1 is sam-

pled from a stationary Gaussian long-memory process with the spectral density given

by (6). Let the quasi-maximum likelihood estimator θ̂ ∈ Θ, a compact parameter space,

and the true parameter θ0 be in the interior of the parameter space. Assume that each

component of R = (r, R1, ..., Rc) is known to be between 0 and some integer K. Let r0

and d0 be the true values of r and d, and the truncation parameter M increase with

the sample size so that M →∞. Then the QMLE R̂ and θ̂ are consistent. Moreover,

if
√

NM−2r0−2d0−1 → 0 as N → ∞, then
√

N(θ̂ − θ0) converges in distribution to a

normal random vector with mean 0 and covariance matrix Γ(θ0)
−1 with

Γ(θ) =
1

4π

∫ π

−π
(5 log f(ω; R, θ))(5 log f(ω; R, θ))′dω, (12)

where 5 denotes the derivative operator with respect to θ, and superscript ′ denotes

transpose.
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5 Simulation studies

In this section, we report some finite sample performance of the quasi-maximum like-

lihood estimator for models simulated from stationary and non-stationary Gaussian

processes such that {∇r∇R
z Yi}N

i=−δ is a stationary process with its spectral density

defined by

f(ω; r, d, D, σ2)

= σ2

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 ∣∣∣∣sin(zω

2

)∣∣∣∣−2D ∞∑
k=−∞

|ω + 2kπ|−2r−2d−2, (13)

and

f(ω; r, d, D, Φ1,1, Θ1,1, σ
2)

= σ2

∣∣∣∣sin(ω

2

)∣∣∣∣2r+2 ∣∣∣∣sin(zω

2

)∣∣∣∣−2D
∣∣∣∣∣Θ1(exp(izω))

Φ1(exp(izω))

∣∣∣∣∣
2 ∞∑

k=−∞
|ω + 2kπ|−2r−2d−2, (14)

where Φ1(z) = 1−Φ1,1z, Θ1(z) = 1 + Θ1,1z, −π < ω ≤ π, and δ = maxr + maxRz. We

consider σ = 2, and z = 10. The true values of the parameters are given in Tables 1

and 2. We used the method of Davies and Harte (1987) to simulate the model. The

sample sizes considered are N = 512 and N = 1,024. All the computations in this and

the following section were performed using Fortran code with IMSL subroutines. In our

experiments, we chose both maxr and maxR to be 2. The averages and the standard

errors of 1,000 replicates of the estimators for models (13) and (14) are summarized in

Table 1 and 2, respectively. The asymptotic standard errors of the parameter estimators

computed from Γ(θ) defined in equation (12) are also given in the tables. Again,

f(ω; ξ, R, σ2) is approximated by f̃(ω; ξ, R, σ2) defined in (8). The value of M used in

the computation of h(ω; ξ, R), defined below (8), is set to be 100. We have also tried

M = 1000 in the program and the results are essentially the same.
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Table 1: Averages (standard deviation) [asymptotic standard deviation] of

1,000 simulations of the quasi-maximum likelihood estimators of the pa-

rameters d, D, σ, r, and R for model (13).

parameter true value N=512 (z=10) N=1,024 (z=10)

d 0.1 0.0988(0.0290)[0.0284] 0.0992(0.0213)[0.0201]

D 0.3 0.3214(0.0412)[0.0346] 0.3139(0.0276)[0.0244]

d+D 0.4 0.4203(0.0480)[0.0429] 0.4131(0.0341)[0.0303]

σ 2.0 1.9952(0.0838)[0.0820] 1.9944(0.0588)[0.0580]

r 0 0.0000(0.0000)[0.0000] 0.0000(0.0000)[0.0000]

R 0 0.0000(0.0000)[0.0000] 0.0000(0.0000)[0.0000]

d 0.2 0.1995(0.0324)[0.0308] 0.1998(0.0224)[0.0218]

D 0.2 0.2041(0.0382)[0.0346] 0.2041(0.0255)[0.0245]

d+D 0.4 0.4036(0.0473)[0.0443] 0.4039(0.0328)[0.0313]

σ 2.0 2.0044(0.0844)[0.0800] 2.0005(0.0594)[0.0566]

r 1 1.0000(0.0000)[0.0000] 1.0000(0.0000)[0.0000]

R 1 1.0000(0.0000)[0.0000] 1.0000(0.0000)[0.0000]

Table 1 shows that for models without a seasonal short memory component (defined

by Equation (13)), the estimates are quite good in terms of biases and variances for

both sample sizes 512 and 1,024. Table 2 shows that for models with a seasonal short

memory component (defined by Equation (14)), the biases and the variances of the

estimates tend to be larger compared with models without a seasonal short memory

component, and the biases and the variances become smaller with increasing sample

size, which is consistent with the theory developed in the previous section.
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Table 2: Averages (standard deviation) [asymptotic standard deviation] of

1,000 simulations of the quasi-maximum likelihood estimators of the pa-

rameters d, D, σ, r, R, Φ1,1, and Θ1,1 for model (14).

parameter true value N=512 (z=10) N=1,024 (z=10)

d -0.1 -0.1021(0.0285)[0.0265] -0.1013(0.0200)[0.0187]

D 0.3 0.3231(0.0652)[0.0507] 0.3184(0.0414)[0.0354]

d + D 0.2 0.2210(0.0699)[0.0554] 0.2171(0.0456)[0.0392]

Φ1,1 -0.3 -0.3058(0.1791)[0.1459] -0.3134(0.1111)[0.1032]

Θ1,1 0.6 0.5874(0.1286)[0.1065] 0.5991(0.0798)[0.0753]

σ 2.0 2.0023(0.1125)[0.0988] 1.9951(0.0772)[0.0698]

r 0 0.0000(0.0000)[0.0000] 0.0000(0.0000)[0.0000]

R 0 0.0000(0.0000)[0.0000] 0.0000(0.0000)[0.0000]

d 0.1 0.0980(0.0349)[0.0308] 0.0990(0.0230)[0.0218]

D 0.25 0.2570(0.1057)[0.0798] 0.2578(0.0714)[0.0564]

d + D 0.35 0.3550(0.1081)[0.0844] 0.3568(0.0737)[0.0597]

Φ1,1 0.3 0.2805(0.1805)[0.1484] 0.2872(0.1185)[0.1049]

Θ1,1 0.2 0.1715(0.2278)[0.0992] 0.1959(0.1037)[0.0701]

σ 2.0 2.0410(0.1626)[0.1278] 2.0162(0.1117)[0.0904]

r 1 1.0000(0.0000)[0.0000] 1.0000(0.0000)[0.0000]

R 1 1.0320(0.1761)[0.0000] 1.0040(0.0063)[0.0000]
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6 Applications

In this section, we report some analysis of a time series of counts of http requests to a

World Wide Web server at the University of Saskatchewan, Canada, between 1 June

and 31 December in year 1995, within the framework of the limiting aggregate seasonal

long-memory model and Whittle maximum likelihood estimation. The original data

set consists of time stamps of 1-second resolution, which can be downloaded from

http://ita.ee.lbl.gov/html/contrib/Sask-HTTP.html. Palma and Chan (2005)

analyzed the 30-minute (non-overlapping) aggregates, i.e., each data point represents

the total number of requests sent to the Sakastchewan’s server within a 30-minute

interval. To make the data more Gaussian and to stabilize their variances, Palma

and Chan (2005) applied a logarithmic transformation to the aggregate data. See

Figures 1, 2, and 3 for the time series plot, the sample autocorrelation function, and

the periodogram of the transformed aggregate data. Their fitted model is a SARFIMA

(1, d, 1) × (0, D, 0)s model with (d̂, D̂, φ̂, θ̂) = (0.076, 0.148, 0.917, 0.583). Although

this model explains roughly two thirds of the total variance of the data, the residuals

display significant autocorrelations at several lags, in particular, at lags from 40 to

50 (Figure 6(a) of Palma and Chan 2005), suggesting a lack of fit. Hsu and Tsai

(2007) also analyzed the same data set, pointing out the presence of both daily and

weekly persistency in the data. Indeed, observe that there are two major peaks in the

periodogram: one at the origin and another at frequency ω = 2π× 189/9074 = 0.1309.

These features indicate a possible seasonal long-memory process with z = 48, i.e. a

daily pattern. The third peak is at frequency ω = 2π × 27/9074 = 0.0187, indicating

a possible weekly pattern.

Here, we re-analyze this dataset with the limiting aggregate seasonal long-memory

model defined by (6) with c = 3, r = R1 = R2 = R3 = 0, z1 = 1, z2 = 48 (corresponding
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to daily effects), and z3 = 48 × 7 = 336 (corresponding to weekly effects). Our

new approach may be justified as the 30-minute aggregation may well fall within the

intermediate asymptotic framework studied in Section 3. As discussed in Remark 2

of Section 3, we assume D1 = 0. Specifically, if {Yt} is the observed time series, the

spectral density function of {Yt} can be written as

fξ(ω) = σ2

∣∣∣∣sin(z1ω

2

)∣∣∣∣2 ∣∣∣∣sin(z2ω

2

)∣∣∣∣−2D2
∣∣∣∣sin(z3ω

2

)∣∣∣∣−2D3
∣∣∣∣∣Θ1(exp(iω))

Φ1(exp(iω))

∣∣∣∣∣
2

×
∣∣∣∣∣Θ2(exp(iz2ω))

Φ2(exp(iz2ω))

∣∣∣∣∣
2 ∣∣∣∣∣Θ3(exp(iz3ω))

Φ3(exp(iz3ω))

∣∣∣∣∣
2 ∞∑

k=−∞
|ω + 2kπ|−2d−2. (15)

We have considered models of orders (P1, Q1, P2, Q2, P3, Q3) = (P1, Q1, 0, 0, 0, 0)

with 0 ≤ P1 ≤ 2, and 0 ≤ Q1 ≤ 2. The model with the smallest AIC (Akaike

information criterion) is (P1, Q1, P2, Q2, P3, Q3) = (2, 2, 0, 0, 0, 0). Before using this

model for drawing inference, it is pertinent to examine its goodness of fit. This can

be more conveniently carried out in frequency domain, by checking whether or not

{IN(ωj)/g̃(ωj; ξ̂M)} are roughly independent and identically distributed. Consider the

test statistic Wobs = max1≤p≤Ñ |Tp − p/Ñ | (Priestley, 1981), where Ñ = [N/2] is the

largest integer ≤ N/2, and Tp =
∑p

j=1{IN(ωj)/g̃(ωj; ξ̂M)}/∑Ñ
j=1{IN(ωj)/g̃(ωj; ξ̂M)},

for p = 1, . . . , Ñ . A large value of Wp signifies possible lack of fit. A bootstrap

procedure (Hidalgo and Kreiss, 2006) in the frequency domain is used to compute the

bootstrap p-value of Wobs.

Let Ỹt = (Yt − Ȳ )/σ̂Y , where Ȳ =
∑N

t=1 Yt/N and σ̂2
Y =

∑N
t=1 (Yt − Ȳ )

2
/(N − 1),

be the standardized data of {Yt}N
t=1. The bootstrap procedure runs as follows.

Step 1: Draw a random sample of size N with replacement from the empirical

distribution of Ỹt. Denote that sample as Y ∗ = (Y ∗
1 , ..., Y ∗

N)
′
.

Step 2: For j=1,. . . ,Ñ , compute the bootstrap periodogram

I∗N(ωj) = f̃(ωj; ξ̂M , σ̂2
M)I∗N,Y (ωj),
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where I∗N,Y (ωj) = |∑N
t=1 Y ∗

t exp(itωj)|2/N .

Step 3: Compute the bootstrap objective function

−l̃M(ξ) =
T∑

j=1

log g̃(ωj; ξ) + T log

 T∑
j=1

I∗N(ωj)

g̃(ωj; ξ)

+ C,

where C = T − T log T . The objective function is minimized with respect to ξ to get

the bootstrap quasi-maximum likelihood estimator ξ̂∗M .

Step 4: Compute T ∗
p =

∑p
j=1{I∗N(ωj)/g̃(ωj; ξ̂

∗
M)}/∑Ñ

j=1{I∗N(ωj)/g̃(ωj; ξ̂
∗
M)}, for p =

1, . . . , Ñ , and W ∗ = max1≤p≤Ñ |T ∗
p − p/Ñ |.

The above four steps are run B times (here B = 1,000) to get W ∗
1 ,...,W ∗

B and

ξ̂∗M,1,..., ξ̂∗M,B. The W ∗
j ’s are used to compute the bootstrap p-value of Wobs and the

ξ̂∗M,j’s are used to compute the bootstrap confidence intervals of the parameters. Specif-

ically, the bootstrap p-value of Wobs equals ]{j|Wobs < W ∗
j , j = 1, ..., B}/B, where ]{A}

denotes the cardinal number of the set A.

Alternatively, we could replace steps 1 and 2 by

Step 1
′
: Draw independent exponential variables χ1,...,χÑ with unit mean.

Step 2
′
: For j = 1, . . . , Ñ , compute the bootstrap periodogram I∗N(ωj) = f̃(ωj; ξ̂M , σ̂2

M)χj.

The bootstrap p-values of Wobs based on steps 1-4 for the (P1, Q1, P2, Q2, P3, Q3) =

(2, 2, 0, 0, 0, 0) model is 0.098, suggesting a good fit to the data.

The maximum likelihood estimates of the parameters and the 95% bootstrap confi-

dence intervals based on steps 1-4 are summarized in Table 3. The asymptotic standard

deviations and the asymptotic 95% confidence intervals are also included in Table 3.

It is clear that the bootstrap confidence intervals of the parameters are comparable to

their asymptotic counterparts. The confidence intervals of the parameters d+D2 +D3,

D2 and D3 indicate that the long-memory pattern, the daily seasonal long-memory

pattern and the weekly seasonal long-memory pattern are all significant.
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Figure 1: Log transformed 30-minute (non-overlapping) aggregates.
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Figure 2: The autocorrelation function of the log transformed 30-minute (non-

overlapping) aggregates.
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Figure 3: The periodgram of the log transformed 30-minute (non-overlapping) aggre-

gates.
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Table 3: Maximum likelihood estimates of the parameters of the model defined by

equation (15), with (P1, Q1, P2, Q2, P3, Q3) = (2, 2, 0, 0, 0, 0)

Parameter Estimated Bootstrap 95% Asymptotic Asymptotic 95%

value confidence standard confidence

interval error interval

d 0.2326 (0.1268, 0.2608) 0.0436 (0.1471, 0.3181)

D2 0.1274 (0.1085, 0.1429) 0.0083 (0.1111, 0.1437)

D3 0.1271 (0.1083, 0.1430) 0.0083 (0.1108, 0.1434)

d + D2 + D3 0.4871 (0.3821, 0.5000) 0.0441 (0.4007, 0.5735)

φ1,1 1.1277 (0.8916, 1.5089) 0.1256 (0.8815, 1.3739)

φ1,2 -0.2610 (-0.5773, -0.0508) 0.1009 (-0.4588, -0.0632)

θ1,1 -1.1788 (-1.4586, -0.9315) 0.0936 (-1.3623, -0.9953)

θ1,2 0.3593 (0.1237, 0.5755) 0.0831 (0.1964, 0.5222)

σ 0.3117 (0.3017, 0.3194) 0.0051 (0.3017, 0.3217)
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7 Concluding remarks

We have derived the limiting structure of the temporal aggregates of a (possibly non-

stationary) SARFIMA model, with increasing aggregation, under the condition that

the seasonal periods of the underlying process are multiples of the aggregation size.

The limiting model can be estimated by maximizing the Whittle likelihood. We have

also derived some large sample properties of the quasi-maximum likelihood estimators

including consistency and asymptotic normality. Monte Carlo experiments showed

that the QMLE performed well with sample size N = 512 or above. The efficacy of

our proposed methodology is illustrated with an analysis of an internet traffic data.

Model diagnostic using a bootstrap procedure in the frequency domain suggests a good

fit. Future research problems include extending the model to include covariates and

developing other tools for model diagnostics.

APPENDIX

Proof of Theorem 1. (a) First note that ∇r∇R1
s1
· · ·∇Rc

sc
Yt admits the following spectral

representation (Priestley 1981, equation 4.11.19): ∇r∇R1
s1
· · ·∇Rc

sc
Yt =

∫ π
−π exp(itω)dZ(ω)

with E|dZ(ω)|2 = h(ω)dω, where h(·) is given by equation (2). Also note that

(1−Bz1)R1 · · · (1−Bzc)RcXm
T

=
R1∑

k1=0

(
R1

k1

)
(−1)k1Bk1z1 · · ·

Rc∑
kc=0

(
Rc

kc

)
(−1)kcBkczcXm

T

=
R1∑

k1=0

· · ·
Rc∑

kc=0

(
R1

k1

)
· · ·

(
Rc

kc

)
(−1)k1+···+kcXm

T−k1z1−···−kczc

=
R1∑

k1=0

· · ·
Rc∑

kc=0

(
R1

k1

)
· · ·

(
Rc

kc

)
(−1)k1+···+kc

mT∑
t=m(T−1)+1

Yt−k1s1−···−kcsc

=
mT∑

t=m(T−1)+1

(1−Bs1)R1 · · · (1−Bsc)RcYt. (16)
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Thus, by (16) and the technique used in the proof of Theorem 1 of Tsai and Chan (2005),

we have, for m = 2h + 1,

(1−B)r(1−Bz1)R1 · · · (1−Bzc)RcXm
T

= (1−B)r
mT∑

t=m(T−1)+1

(1−Bs1)R1 · · · (1−Bsc)RcYt

=
∫ π

−π
exp(iωT )dZm(ω),

where

dZm(ω) =
h∑

k=−h


(

1− exp
(

i(ω + 2kπ)

m

))−r−1

exp

(
i(1−m)(r + 1)(ω + 2kπ)

m

)

×(1− exp(iω))r+1dZ

(
ω + 2kπ

m

)}
,

−π < ω ≤ π. Therefore, for m = 2h + 1 and −π < ω ≤ π,

fξ,m(ω)dω = E(|dZm(ω)|2)

=
1

m
|1− exp(iω)|2r+2

c∏
j=1

|1− exp(izjω)|−2Dj

c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
h∑

k=−h

∣∣∣∣∣1− exp

(
i(ω + 2kπ)

m

)∣∣∣∣∣
−2r−2d−2

g

(
ω + 2kπ

m

)
dω

=
1

m

∣∣∣∣2 sin
(

ω

2

)∣∣∣∣2r+2 c∏
j=1

∣∣∣∣2 sin
(

zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2

×
h∑

k=−h

∣∣∣∣∣2 sin

(
ω + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
ω + 2kπ

m

)
dω.

This proves part (a) for m = 2h + 1. The proof for the case of m = 2h is similar and

hence omitted.

(b) Without loss of generality, consider m = 2h + 1.

m−2r−2d−1fξ,m(ω) = {2(1− cos ω)}r+1
c∏

j=1

∣∣∣∣2 sin
(

zjω

2

)∣∣∣∣−2Dj c∏
j=1

∣∣∣∣∣Θj(exp(izjω))

Φj(exp(izjω))

∣∣∣∣∣
2
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×
h∑

k=−h

∣∣∣∣∣2m sin

(
ω + 2kπ

2m

)∣∣∣∣∣
−2r−2d−2

g

(
ω + 2kπ

m

)
,

which tends to {2(1−cos ω)}r+1∏c
j=1 |2 sin(zjω/2)|−2Dj

∏c
j=1 |Θj(exp(izjω))|2|Φj(exp(izjω))|−2∑∞

k=−∞ |ω + 2kπ|−2r−2d−2g(0) by the dominated convergence theorem, owing to (i) the

inequality | sin ω| ≤ |ω|, (ii) the boundedness of g and its continuity at 0, and (iii) the

fact that
∑∞

k=−∞ |ω+2kπ|−2r−2d−2 < ∞ based on the assumption given in Remark 3 in

Section 3. The convergence of the normalization constants of fξ,m to Kξ follows along

similar arguments.

Proof of Theorem 2. Let the true differencing orders be r0 and Rj,0, j = 1, . . . , c.

There are two cases dependent on whether or not all of the differencing orders r and

Rj, j = 1, . . . , c, are greater than or equal to their true counterparts, in which case it

shall be designated as Case 1 and otherwise Case 2. In other words, Case 1 concerns the

case that the differenced series is stationary whereas Case 2 implies that the differenced

series is non-stationary.

For Case 2, we claim that the approximate negative Whittle likelihood defined

by (7), when normalized by the sample size, is eventually uniformly unbounded, with

probability 1. Hence, the QMLE must have the differencing orders greater than or equal

to their true counterparts. To prove the claim, note that the root condition preceding

Equation (2) ensures that f̃(ωj; R, θ) is bounded away from 0 for all sufficiently large M

and uniformly for all θ (over the compact parameter space). Moreover, it can be readily

checked that F (θ) =
∫ π
0 log f̃(ω; R, θ)dω is uniformly bounded for θ. Consequently,

FN(θ) =
∑T

j=1 2π log f̃(ωj; R, θ)/N must be uniformly bounded for all θ, which can

be verified by deriving a contradiction if it is not true, as follows. Suppose that the

normalized sums are unbounded over the compact parameter space and for all positive

integer N . Then, without loss of generality, there exists a sequence θN in the compact

parameter space such that FN(θN) →∞ as N →∞ and θN → θ0, the true parameter
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vector. However, this implies that F (θ0) = ∞, by Lebesgue dominated convergence

theorem, leading to a contradiction. The proof of the claim is completed by observing

that there exists a positive constant C1 such that

1

N

T∑
j=1

IN(ωj; R)

f̃(ωj; R, θ)
≥ C1

N

T∑
j=1

IN(ωj; R),

and
∑T

j=1 IN(ωj; R)/(T − 1) equals the sample variance of the under-differenced series

which tends to infinity almost surely, due to the non-stationarity of the differenced

series.

Henceforth, we focus on Case 1 so that the differenced series must be stationary.

The parameters r and R’s are discrete and admit only finitely many values. However,

for fixed r and R’s, the other parameters are continuous-valued, and Lemma 1 of Hosoya

(1996) then implies the consistency of the QMLE. Hence, for ease of exposition, we

shall only give the proof for the case when r and R’s are set to their true values. We

first note that the techniques used in proving Theorem 1 of Tsai (2006) can be adapted

to show that the approximation of the Whittle likelihood (7) by (9) is asymptotically

negligible under the stated growth rate of M . Below, we implicitly assume that the

negative Whittle likelihood is normalized by the sample size. Because the parameter

space is compact, it can be shown by routine analysis that the first partial derivatives of

the approximate Whittle likelihood differ from those of the true Whittle likelihood by

an error of order op(1), uniformly over the parameter space. That the approximation

of the Whittle likelihood has negligible effects on the large-sample asymptotics of the

QMLE follows from the proof of Theorem 1 and Lemma 1 of Hosoya (1996), and

the fact that, over a sufficiently small neighborhood of the true parameter vector, the

approximation errors of the first partial derivatives are of order Op(M
−2r0−2d0−1), see

the discussion below (8).
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Thus, without loss of generality, we can assume that the estimator is the exact

QMLE, in which case Theorem 2 follows from Theorem 2 of Hosoya (1996) if we can

verify Conditions A, C, and D listed there. (For ease of exposition, we confine the proof

for the case that the true differencing orders R = 0 and r = 0, as the proof for the

general case is similar.) We now verify these conditions. Let δ(x, y) = 1 if x = y, and

δ(x, y) = 0 otherwise. First, write f(ω; ξ, R, σ2) = σ22−2r−2+2D1+···+2Dc|k(ω)|2, where

k(ω) = (1− exp(iω))r+1
c∏

j=1

(1− exp(izjω))−2Dj

c∏
j=1

Θj(exp(izjω))

Φj(exp(izjω))

×


∞∑

k=−∞
|ω + 2kπ|−2r−2d−2


1/2

.

For t = 1, ...., N , write Yt =
∑∞

j=0 Gjet−j, where {ej} is a sequence of is a sequence of

independent and identically distributed normal random variables with zero mean and

unit variance, and {Gj} is such that k(ω) =
∑∞

j=0 Gj exp(ijω). Condition A can be

checked easily, and therefore omitted. In what follows, we write f(ω) for f(ω; R, θ) for

simplicity. We now verify condition C.

(i) (a) We will show that
∫ π
−π fu(ω)dω < ∞ for some u such that 1 < u ≤ 2. By

Remark 1 in Section 3, it can be easily checked that there exists non-negative

constants b0, b1, and bjk, εjk, j = 1, · · · , c, k = 1, · · · , [zj/2], such that∫ π

−π
fu(ω)dω

≤ b0

∫ ε

0
ω−2u(d+D1+···+Dc)dω +

c∑
j=1

[zj/2]∑
k=1

bjk

∫ ωjk

ωjk−εjk

(ωjk − ω)−2uDjdω + b1

< ∞.

(b) We need to show that there exists γ > 0 such that

sup
|λ|<ε

‖f−1(·){f(·)− f(· − λ)}‖u = O(εγ), (17)
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where ‖g‖p = {
∫ π
−π |g(ω)|pdω}1/p. This can be shown by making use of two

inequalities, the first one being that for any functions a and b, there exists a

constant K > 0 such that for all |λ| small,

‖a−1(·)b−1(·){a(·)b(·)− a(· − λ)b(· − λ)}‖u

≤ K(‖a−1(·){a(·)− a(· − λ)}‖u + ‖b−1(·){b(·)− b(· − λ)}‖u),

if the ratio a−1(·){a(·)−a(·−λ)} is uniformly bounded for all λ that are sufficiently

small. The second inequality is the trivial observation that for any function a and

any finite partition [−π, π] = ∪Ak, ‖a‖u ≤
∑ ‖aIAk

‖u where IA is the indicator

function of the set A. Note that the spectral density function has poles possibly

at 0, and integer multiples of 2π/zj, j = 1, . . . , c, that are not greater than π in

magnitude, and that the spectral density function is uniformly continuous over

any compact set that does not include any pole of the function. The second

inequality implies that (17) holds if it holds when the spectral density function

is restricted to any small interval containing only one pole of the spectral density

function. Thus, it suffices to show that (17) holds for f(ω) = |ω|−κ with some

0 < γ < 1, where 1 > κ > 0, which we now verify. Let u > 1 be a constant such

that 0 < uκ < 1. Because 0 ≤ (ω + |λ|)κ − ωκ ≤ |λ|κ, for ω ≥ 0, we have

‖f−1(·){f(·)− f(· − λ)}‖u
u

≤ 2
∫ π

0

{(ω + |λ|)κ − ωκ}u

(ω + |λ|)κu
dω +

∫ |λ|

0

∣∣∣∣∣ωκ − (|λ| − ω)κ

(|λ| − ω)κ

∣∣∣∣∣
u

dω

≤ 2|λ|κu
∫ π

0
(ω + |λ|)−κudω +

∫ |λ|

0
|ωκ/(|λ| − ω)κ − 1|udω

≤ 2|λ|κu{(π + |λ|)1−κu − |λ|1−κu}/(1− κu) + 2u|λ|(1 + |λ|κu/(κu + 1)).

(ii) Let hj(ω) = ∂f−1(ω; θ)/∂θj, where θj is the jth component of θ. For any ε > 0,

there exists a > 0 and Hermitian-valued bounded functions h̃j and h̄j such that,
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if |θ1 − θ| < a, h̃j(ω) ≤ hj(ω, θ1) ≤ h̄j(ω) and
∥∥∥{h̄j(·) − h̃j(·)}f(·)

∥∥∥
v

< ε, where

v = (u− 1)/u for u given in (17) above.

The Hermitian-value requirement is automatically satisfied since the time series

is univariate. Note that ∂f−1/∂θj = −f−1∂ log f/∂θj and that f−1 is a uniformly

continuous function in ω and θ in a sufficiently small neighborhood of θ0, and

so are the first partial derivatives of log f . Thus, the requirement in (ii) can be

readily verified.

(iii) Let Vj(θ) = Hj(θ) +
∫ π
−π tr{hj(ω, θ)f(ω)}dω, where f(ω) is the true spectral den-

sity function, hj(ω, θ) = ∂f−1(ω, θ)/∂θj, and Hj(θ) = ∂
∫ π
−π log |f(ω; θ)|dω/∂θj.

Then, Vj(θ) has a unique zero for all j at θ = θ0, where θ0 is an interior point of

θ.

This condition can be proved as follows. Note that the true spectral density

function is, by assumption, equal to f(ω, θ0). Consider the function Q(θ) =∫ π
−π log f(ω, θ)dω−

∫ π
−π log f(ω, θ0)dω+

∫ π
−π f(ω, θ0)/f(ω, θ)dω. Note that the par-

tial derivative of Q with respect to the jth component of θ equals Vj(θ), for all j.

Condition (iii) holds if Q attains its unique minimum at θ = θ0, which is shown

below. Define T (x) = exp(x)− x which is a convex function that is always ≥ 1.

Jensen’s inequality implies that

Q(θ)/(2π) =
∫ π

−π
T (log f(ω, θ0)− log f(ω, θ))dω/(2π)

≥ T
(∫ π

−π
{log f(ω, θ0)− log f(ω, θ)}dω/(2π)

)
≥ 1,

with both equalities obtained if and only if θ = θ0.

(iv) Hj(θ) is continuous on θ.
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This condition holds trivially.

Parts (i)–(iii) of condition D can be proved by arguments similar to those used in

proving conditions (i) and (ii) of condition C. Condition (v) of condition D can be

easily verified if the spectral density function admits no poles but otherwise it can

be proved by adapting the arguments presented in Example 3.1 of Hosoya (1996). It

remains to consider

(iv)
∣∣∣V (θ)

∣∣∣ ≥ α1

∣∣∣θ1 − θ0

∣∣∣ for some α1 > 0 in a neighborhood of θ0, where V is the

vector consisting of all the first partial derivatives Vj.

This condition holds because it is straightforward to show that

∂2Q

∂θi∂θj

=
∫ π

−π

∂ log f(ω, θ0)

∂θi

∂ log f(ω, θ0)

∂θjdω
,

which is positive definite since the partial derivatives are linearly independent.
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